Column $-I$ Angle of projection |
Column $-II$ |
$A.$ $\theta \, = \,{45^o}$ | $1.$ $\frac{{{K_h}}}{{{K_i}}} = \frac{1}{4}$ |
$B.$ $\theta \, = \,{60^o}$ | $2.$ $\frac{{g{T^2}}}{R} = 8$ |
$C.$ $\theta \, = \,{30^o}$ | $3.$ $\frac{R}{H} = 4\sqrt 3 $ |
$D.$ $\theta \, = \,{\tan ^{ - 1}}\,4$ | $4.$ $\frac{R}{H} = 4$ |
$K_i :$ initial kinetic energy
$K_h :$ kinetic energy at the highest point
$A-1,\,\,B-2,\,\,C-3,\,\,D-4$
$A-4,\,\,B-3,\,\,C-2,\,\,D-1$
$A-4,\,\,B-1,\,\,C-3,\,\,D-2$
$A-3,\,\,B-2,\,\,C-4,\,\,D-1$
At the top of the trajectory of a projectile, the directions of its velocity and acceleration are
Projectiles $A$ and $B$ are thrown at angles of $45^{\circ}$ and $60^{\circ}$ with vertical respectively from top of a $400 \mathrm{~m}$ high tower. If their ranges and times of flight are same, the ratio of their speeds of projection $v_A: v_B$ is :
Define projectile motion and projectile particle.
A ball is thrown at an angle $\theta $ and another ball is thrown at an angle $(90^o -\theta )$ with the horizontal from the same point with same speed $40\,ms^{-1}$. The second ball reaches $50\,m$ higher than the first ball. Find their individual heights?
A hill is $500\, m$ high. Supplies are to be sent across the hill, using a canon that can hurl packets at a speed of $125 \,m/s$ over the hill. The canon is located at a distance of $800 \,m$ from the foot of hill and can be moved on the ground at a speed of $2\, ms^{-1}$; so that its distance from the hill can be adjusted. What is the shortest time in which a packet can reach on the ground across the hill ? Take, $g = 10\, ms^{-2}$.